Conjugated linoleic acid increased C-reactive protein in human subjects

Conjugated linoleic acid (CLA) increases 15-keto-dihydro-prostaglandin F2a, a marker for cyclooxygenase-mediated lipid peroxidation and thus an indicator of cyclooxygenase-mediated inflammation. The aim of the present study was to investigate the effects of CLA on other indicators of inflammation in human subjects, including C-reactive protein, TNF-a, TNF-a receptors 1 and 2, and vascular cell adhesion molecule-1.

In a double-blind, placebo-controlled study, fifty-three human subjects were supplemented with a mixture (4-2g/d) of the isomers cis-9,trans-11 CLA and trans-10,cis-12 CLA or control oil for 3 months. CLA supplementation increased levels of C-reactive protein (P= 0-003) compared with the control group. However, no changes in TNF-a, TNF-a receptors 1 and 2, and vascular cell adhesion molecule-1 were detected.

Conjugated linoleic acid: C-reactive protein: Tumour necrosis factor-a: Inflammation

Conjugated linoleic acid (CLA) is widely sold as an antiobesity product, mainly based on results from animal and in vitro studies. However, human studies have shown conflicting results and recent investigations have even suggested an aggravated risk profile for people with the metabolic syndrome after trans-10, cis-12 CLA supplementation.

Population studies show strong associations between indices of inflammation and abnormal lipid and carbohydrate metabolism, obesity and atherosclerosis. It is, however, unclear whether different biomarkers of inflammation are merely indicators or whether they contribute to the progression and development of atherosclerotic disease.

Results from studies of the effects of CLA on parameters of inflammation have been variable. In a number of different animal and in vitro models, CLA has been suggested to have anti-inflammatory and/or immune-ameliorating effects (Yu et al. 2002). However, only a limited number of studies performed in human subjects have shown effects on inflammation.
We previously found increases in C-reactive protein (CRP) levels in obese men after supplementation with CLA trans-10,cis-12 (Riserus et al. 2002b). Kelley et al. (2000) did not find any alterations in indices of immune status in healthy women of a mixture of CLA isomers. Albers et al. (2003) observed beneficial effects on the initiation of a specific response to hepatitis B vaccination in healthy women after CLA supplementation. However, the same group did not observe any effects on TNF-α response in ex vivo mononuclear cells (Albers et al. 2003). In an ex vivo study of rats, TNF production was decreased by CLA (Turek et al. 1998). In our group, we have repeatedly observed considerable increases in 15-keto-dihydro-prostaglandin (PG) F2α after CLA supplementation in human subjects (Basu et al. 2000a,b; Riserus et al. 2002b; Smedman et al. 2004). 15-Keto-dihydro-PGF2α is a major metabolite of PGF2α synthesised through cyclooxygenase-catalysed lipid peroxidation, and has been shown to be an indicator of cyclooxygenase-mediated inflammation (Basu, 1998, 2003).

CRP is an acute-phase protein and a circulatory indicator of inflammation that has been suggested to be a component of the metabolic syndrome (Van Lente, 2000; Lind, 2003; Ridker, 2003). Mildly increased concentrations of CRP, within the clinical normal range, may predict future cardiovascular events (Ridker et al. 1997). Visceral fat has been found to be a promoter of low-grade inflammation, which can explain part of the association between CRP and features of the metabolic syndrome (Forouhi et al. 2001).

TNF-α is a cytokine secreted partly by the adipose tissue that, in addition to its established role in the immune system, affects the metabolism of adipose tissue and glucose homeostasis. Human obesity is positively related to TNF-α expression in adipose and muscle tissue (Hotamisligil et al. 1995; Nilsson et al. 1998), and plasma levels of TNF-α are positively associated with BMI, fasting glucose and serum triacylglycerides, and inversely associated with HDL cholesterol (Nilsson et al. 1998). Thus, increased levels of TNF-α are associated with abnormalities characteristic of the metabolic syndrome and have further been suggested to be involved in the
pathogenesis of non-insulin-dependent diabetes mellitus and insulin resistance (Nilsson et al. 1998).

Abbreviations: CLA, conjugated linoleic acid; CRP, C-reactive protein; PG, prostaglandin; TNFR, tumour necrosis factor-a receptor; VCAM-1, vascular cell adhesion molecule-1. A. Smedman et al.

Two soluble receptors of TNF-a, 1 and 2 (sTNFR1 and sTNFR2), have been proposed to be involved in the regulation of TNF-a activity (Hotamisligil et al. 1997). Present at low concentrations, the soluble receptors are, under normal conditions, believed to protect the organism from the deleterious effects of TNF-a on distant targets (Hotamisligil et al. 1997). Serum levels of sTNFR2 have been shown to be markedly increased in obese subjects compared with lean controls (Hotamisligil et al. 1997). There was no corresponding difference for sTNFR1 (Hotamisligil et al. 1997), although sTNFR1 has been suggested to be produced by adipose tissue (Mohamed-Ali et al. 1999). Both sTNFR1 and sTNFR2 are positively correlated with BMI and percentage body fat (Mohamed-Ali et al. 1999) and insulin resistance (Hauner et al. 1998). Vascular cell adhesion molecule-1 (VCAM-1) is believed to play a key role in the initiation of the atherosclerotic process by mediating the interactions between circulation leucocytes and the blood vessel wall (Krieglstein & Granger, 2001; Dichtl et al. 2002). VCAM-1 is directly involved in the recruitment of inflammatory cells to the vessel wall and has been shown to be directly up-regulated by several proinflammatory molecules such as CRP (Pasceri et al. 2000) and TNF-a (Marui et al. 1993).

Because the effects of CLA in human subjects we have previously observed include decreased body fat content, decreased insulin sensitivity and increased cyclooxygenase-mediated inflammation, it is important to study the effects on markers of inflammation closely related to the clinical variables previously studied. The aim of the present study was to evaluate the effects of supplementation with equal proportions of the CLA isomers cis-9,trans-11 and trans-10,cis-12, a mixture commonly used in commercial CLA preparations, on cytokine-mediated inflammation using the biomarkers CRP, TNF-a, sTNFR1 and sTNFR2, and the effect on vascular inflammatory activation as indicated by sVCAM-1, in human subjects. A secondary aim was to investigate the change in CRP, TNF-a, sTNFR1, sTNFR2 and sVCAM-1 in relation to the increase in 15-keto-dihydro-
PGF2α previously seen. In two previous publications, we have reported on other effects of CLA supplementation in human subjects, based on the same intervention study (Basu et al. 2000b; Smedman & Vessby, 2001).

Results of the study

CRP increased after CLA supplementation compared with the control group (Table 2). In contrast, CLA supplementation did not have any statistically significant effect on the differences between the groups with regard to plasma levels of TNF-α, sTNFR1, sTNFR2 or sVCAM-1 (Table 2). There was no effect of gender or BMI (data not shown). In a post hoc regression analysis of the whole population (n 53), the change in CRP was correlated to the change in 15-keto-dihydro-PGF2α (r 0.315, P= 0.024; data not shown). There was no correlation between the change in TNF-α and the change in 15-keto-dihydro-PGF2α.

Discussion

In this randomised, double-blind, placebo-controlled study of CLA supplementation in volunteers, we found an increase in CRP compared with control treatment (Table 2). In contrast to the effects on CRP, there was no effect on TNF-α, sTNFR1, sTNFR2 or sVCAM-1. Supplementation with trans-10, cis-12 CLA has previously been observed to increase concentrations of CRP (Riserus et al. 2002b). There are no previous results published on the effect of CLA on soluble TNF-α in human subjects in vivo. However, Albers et al. (2003) investigated the TNF-α response in mononuclear cells ex vivo and did not find any change after CLA supplementation in human subjects. In an ex vivo study of CLA-fed rats, Turek et al. (1998) observed decreased TNF-α production. To our knowledge, this is the first time that the effects of CLA supplementation on plasma concentrations of sTNFR1, sTNFR2 and VCAM-1 have been studied in human subjects.

Table 2. Levels of indicators of inflammation before and after the study, given as medians and ranges
Differences within the groups are based on Wilcoxon matched-pairs signed-rank tests, and differences between the groups are based on Wilcoxon rank-sum tests. *P < 0.05, **P < 0.01. CLA, conjugated linoleic acid; CRP, C-reactive protein; sTNFR, soluble TNF-α receptor; sVCAM-1, soluble vascular cell adhesion molecule-1. t n 24.A. Smedman et al.

An increased CRP concentration, even at sub-clinical levels, is associated with the presence of the metabolic syndrome and predicts incident myocardial infarction, stroke, peripheral arterial disease and sudden cardiac death (Ridker, 2003). Like CRP, TNF-α has been associated with the metabolic syndrome (Sethi & Hotamisligil, 1999). In contrast to CRP, however, TNF-α has, in in-vitro studies, been connected with several mechanistic steps of importance for the development of the metabolic syndrome (Sethi & Hotamisligil, 1999). There was no effect on sTNFR1, sTNFR2 or sVCAM-1, although these have been related to obesity and insulin resistance (Hauner et al. 1998; Mohamed-Ali et al. 1999), which have been suggested to be affected by CLA or purified CLA isomers (Smedman & Vessby, 2001; Riserus et al. 2002a). CLA supplementation in human subjects has repeatedly been shown to increase urinary concentrations of 15-keto-dihydro-PGF2a, a marker of cyclooxygenase-catalysed lipid peroxidation and an indicator of inflammation (Basu et al. 2000a,b, Riserus et al. 2002b, 2004b; Smedman et al. 2004). Moreover, the...
increases in CRP and 15-keto-dihydro-PGF2a are correlated. Together, these results suggest a proinflammatory effect of CLA in human subjects, which may possibly be mediated by an increased free radical-induced lipid peroxidation.

The effects of CLA are often isomer specific. In a previous study, the effect on CRP was mainly ascribed to trans-10, cis-12 CLA (Riserus et al. 2002b), whereas no change in CRP was seen in a smaller intervention study with cis-9, trans-11 CLA (U. Riserus, personal communication). In the present study, we used a mixture of isomers, with equal proportions of the CLA isomers cis-9, trans-11 and trans-10, cis-12. It is thus interesting that, with smaller absolute amounts of trans-10, cis-12, we still could obtain significant indications of proinflammatory effects. Trans-10, cis-12 CLA is also known to induce larger increases in 15-keto-dihydro-PGF2a than does cis-9, trans-11 CLA (Basu et al. 2000a; Smedman et al. 2004).

In conclusion, we have observed increases in CRP, a biomarker of cytokine-mediated inflammation in human subjects after supplementation with equal proportions of the CLA isomers cis-9, trans-11 and trans-10, cis-12, a mixture commonly used in commercial CLA preparations. It is interesting that CLA supplementation increased the level of CRP but not of the other inflammatory markers investigated in the present study. The clinical implications of the findings of this study are uncertain, but the results are of concern, considering the widespread use of CLA.